Using Overlays For Efficient Data Transfer Over Shared WAdea

Networks*

Gaurav Khanng, Umit Catalyurek, Tahsin Kur¢, Rajkumar Kettimuthg,

P. Sadayappan lan Fostet, Joel Saltz

! Department of Computer Science and Engineering, The Olaite Siniversity
2Department of Biomedical Informatics, The Ohio State Ursitg

3 Mathematics and Computer Science Division, Argonne Nafibaboratory

Abstract

Data-intensive applications frequently transfer largeants of data over wide-area networks. The performance
achieved in such settings can often be improved by routitg via intermediate nodes chosen to increase aggregate
bandwidth. We explore the benefits of overlay network apginea by designing and implementing a service-oriented
architecture that incorporates two key optimizations —tihop path splitting and multi-pathing — within the GridPT
file transfer protocol. We develop a file transfer scheduétgprithm that incorporates the two optimizations in con-
junction with the use of available file replicas. The aldumitmakes use of information from past GridFTP transfers
to estimate network bandwidths and resource availabilitye effectiveness of these optimizations is evaluated us-
ing several application file transfer patterns: one-tobatladcast, all-to-one gather, and data redistributionaon
wide-area testbed. The experimental results show thatrohitacture and algorithm achieve significant performance

improvement.

1 Introduction

Grid computing technologies have enabled scientists terge®, store, and share data distributed across multipke si
Data analysis in a Grid setting involves use of distributeltections of storage and computational systems and gansf

of large volumes of data in a wide-area network. For exampil, the Large Haldron Collider (LHC) [3] at CERN,

*This research was supported in part by the National Scienoedation under Grants #CCF-0342615, #CNS-0403342 anGHIE43969.

data generated by a CMS experiment [13] must be transfesrmbtTier-1 site in USA, where it is processed and then
multi-cast onto many domestic Tier-2 sites. As another gdantonsider a multi-institutional study that collectslan
analyzes Gigabyte-scale biomedical image data, obtametliigh-resolution scanners, to develop animal models of
phenotypic characteristics of disease progression. Hagsdor thousands of images can be obtained from an animal
and there can be hundreds of animals in a study. Images in-imstitutional studies may be collected and stored
at multiple sites. Researchers wishing to carry out an amalysing images from many subjects will query image
datasets at multiple sites. The image files extracted asuét céghe query will then either be downloaded to a local
system or be transferred to computational machines dig&tibin the environment for processing. These scenarios
involve transfer of large volumes of data from files at theage sites to the computational sites.

High-bandwidth, high-latency optical networks are beingreasingly used by researchers and scientists. These
networks enable the transfer of extremely large files witesiup to a few petabytes. A file transfer mechanism
which can optimize the overlay routes used to transfer fifestake advantage of the available network parallelism
can enhance the data-transfer throughput achieved by dicatgm. In addition, a lot of scientific experiments
may involve the transfer of data over public, shared netwoikstead of a dedicated network infrastructure. Here
it is important for the file transfer mechanism to make ingelht use of available paths to maximize the achievable
bandwidth.

GridFTP [6] is a widely used protocol which enables secugbable and high performance data movement. It
facilitates efficient data transfer between end-systenenygioying techniques like multiple TCP streams per transfe
striped transfers from a set of hosts to another set of hastspartial file transfers. By default, GridFTP employs TCP
as the underlying transport protocol. Multiple TCP strearas be created between the source and the destination in
order to offset the network congestion and improve throughphe use of multiple streams in parallel, however, does
not affect the routing or take into account network parédtel

In this work, we seek to explore the effects of multi-hop pafiitting and multi-pathing to improve the file
transfer performance in GridFTP. Multi-hop path splittingproves performance by replacing a direct TCP connection
between the source and destination by a multi-hop chairugir@ome intermediate nodes. Multi-pathing involves
striping the data at the source and sending it across mailtipérlay paths thereby leading to a better achievable
throughput. In other words, multiple independent routestoa employed to simultaneously transfer disjoint chunks
of a file to its destination. We propose a path determinatieuristic which incorporates these optimizations for
efficient transfer of a single file. To optimize performance batch file transfer requests, we extend a collective
file-transfer scheduling heuristic implemented in an easork [16]. The extended algorithm incorporates multpho

path splitting and multi-pathing optimizations.

We experimentally evaluate the optimizations and theid&fiP implementation on a wide-area testbed. Our per-
formance metric in this work is the total transfer time of adbeof file transfer requests. We investigate performance
improvements under several different file transfer patteame-to-all broadcast, all-to-one gather and data mdulist
tion patterns common in many application scenarios. As amgte, a one-to-all communication pattern may occur
in high-energy physics, where the data stored at a US Tiéeeeds to be broadcast to all Tier-2 sites. As another
example, a all-to-one gather operation may arise when areser runs a biomedical image analysis on a local ma-
chine using a subset of images collected at different sifas. results show that the proposed optimizations lead to
significant performance improvements for communicatioibgoas like one-to-all, gather, and data redistributiamir
a set of source nodes to a set of destination nodes. Howesexlse observe that the improvements are significantly
lower when data replication is employed.

The rest of the paper is organized as follows. Section 2 ptesan overview of the related work in wide-area
data-staging. Section 3 talks about the two key optimipative propose to use in this work, namely, multi-hop path
splitting and multi-pathing. Furthermore, it also talk®abour proposed path determination heuristics and a ¢oléeec
file-transfer scheduling framework for efficient transféfiles over the wide-area. Section 4 focuses on the design and
implementation of a service-oriented architecture thabiporates the two optimizations within GridFTP file tragrsf

protocol. Section 5 describes an experimental evaluatiouioproposed heuristics.

2 Related Work

The Distributed Parallel Storage Server (DPSS) [25, 26]vsde-area distributed storage system that employs opti-
mizations such as parallel TCP streams and TCP tuning. lt@mp collection of distributed disk servers to provide
high speed random access to large-scale data. GridFTPd6&Yidely used protocol which enables secure, reliable and
high performance data movement. GridFTP applies concemts DPSS to facilitate efficient data transfer between
end-systems. It employs techniques like multiple TCP steper transfer, striped transfers from a set of hosts to
another set of hosts and patrtial file transfers. Howevek3rP currently does not incorporate optimizations which
affect network routing or take into account any network flaliam. In this work, our contribution is to explore the
use of two key optimizations, namely, multi-hop path sipigtand multi-pathing and propose optimization algorithms
which can exploit these optimizations to maximize file tfeanghroughput. We design and implement these optimiza-
tions within the realm of GridFTP which is a commonly used fiilnsfer mechanism over the wide-area.

Cai et al.[11] propose PGOS, a routing and scheduling algorivhich tries to achieve desired QoS levels for

multiple competing flows. In this work, the goal is to miniraithe total transfer time in a collaborative setting

where the global objective of minimizing the time is more omjant than achieving each competing request’s desired
QoS. To achieve this goal, we integrate multi-hop path tipdjitand multi-pathing and incorporate it in our existing
collective scheduling framework [16]. Stork [19] is a sp#ized scheduler for data placement activities on the Grid.
The scheduler allows check-pointing and monitoring of dietasfers as well as use of DAG schedulers to encapsulate
dependencies between computation and data movement.sipaper, we focus on modeling the heterogeneity and
the dynamics of a wide-area environment to perform effictatiective file transfer scheduling. LDR [2] is a tool for
creating copies of datasets across a Virtual Organizatibimvolves replication of data to multiple sites as well as
selection of replicas for the purpose of transferring data tlient. The data transfer optimizations proposed in this
work are complementary to a framework like LDR and can beripomated into it.

Swany [23] exploits the "logistical effect” which essetiifaneans improving performance by dividing a connec-
tion into a series of shorter, better performing conneaidn a recent work, Rizk et al. [21] have looked at providing
TCP splitting functionality with respect to GridFTP and sleal performance improvement for single file transfers. In
this work, we propose to optimize single file transfers by Eyimg both multi-hop path splitting and multi-pathing in
an integrated fashion. In addition, we incorporate theggropations into a collective file-transfer schedulingrfre-
work and evaluate its effectiveness. BitTorrent is an itiverbased file sharing system which employs a tit-for-tat
strategy where in the peers which contribute more data tgrfagstes get preferential treatment for downloads. The
optimizations that we explore in this work, can be used torowp the performance of a single file transfer of a par-
ticular file. BitTorrent is not meant to improve the performea of single file transfers, but is more suited to a case
where a bunch of peers request the same file(s), that is, sagtimization. In addition, BitTorrent does not perform
any explicit multi-swarm optimization. Moreover, our gadalto perform makespan optimization where the global
objective of minimizing the time is more important than eaith’s local benefits.

Giersch et al. [12] have addressed the problem of schedalaudlection of tasks sharing files onto heterogeneous
clusters. Their work focused mainly on task mapping and frposed extensions to the MinMin heuristic [14]
to lower the scheduling cost. In our past work, we looked atghoblem of scheduling a batch of data-intensive
tasks [17]. We have also investigated scheduling of filesfiens in data center environments where in the scheduler
has ultimate control [15]. In this work, we are targeting dygmic heterogeneous wide-area environments like Grids.
In our recent work [16], we proposed a scheduling algorithiricl schedules a set of data transfer requests in a
wide-area environment like the Grid. The scheduling schéraeever, does not incorporate multi-hop path splitting
or multi-pathing. In this paper, we propose a new dynamiedaling algorithm which builds upon the algorithm
proposed in our previous work by incorporating the ideas oftihop path splitting and multi-pathing.

Network Weather Service (NWS) [27] is a well-known tool ugednonitor network resources. NWS relies on

active “probing” to determine the available bandwidth aatéhcies of the actual network. However, past research has
shown that NWS is not quite effective for ascertaining thdgrenance of Grid Data transfers [5]. In this paper, we

employ passive monitoring through actual data measuresnasbpposed to active monitoring using a tool like NWS.

3 Data Transport Optimizations

In this section, we provide an overview of the optimizatiomgestigated in this work.

3.1 Multi-Hop Path Splitting

The observed throughput of GridFTP transfers in a wide-an&@onment may be lower than the maximum achievable
throughput, due to a number of factors, such as the slow-atarcongestion control mechanisms used by TCP. The
technique of dividing a TCP connection into a set of sholdetter performing connections by splitting it at multiple
intermediate points with the goal of improving the overalidughput has been studied [8, 9, 10, 21]. A split-TCP
connection may perform better than a single end-to-end T&@ection due to several reasons. First, the round-trip
time on each intermediate hop is shorter as compared to tbet @nd-to-end path. The congestion control mechanism
of TCP would sense the maximum throughput quickly therelgirmihg steady state, wherein it will give maximal
possible throughput until a congestion event occurs. SEamy packet loss is not propagated all the way back to the
source but only to the previous intermediate hop. In thiskyvas an alternative to a direct TCP connection between a
source and destination, we explore the use of multi-hoplipipe transfers using intermediate nodes. If the bandwidth
on each of the intermediate hops is higher than the dirett, pla¢ overall throughput can be expected to improve.
Figure 1 illustrates the use of multi-hop paths to transfi@edrom a source to a destination. The direct path from the
node C1 to C4 has the bandwidih 4 while an alternate path from the node C1 to C4 comprises e&thops, C1-C2,
C2-C3 and C3-C4. The bandwidth on the multi-hop p&tf;;; equals the minimum of the bandwidth on each of the

hops.

Bgpiit = min (B12, Bas, Ba) (1)

The multi-hop path is preferable for transfer of data frond@&1 to C4 if theB,,,;; is greater thanB,4 and the
end-to-end latencies of the multi-hop path and the direttt pge comparable. We also refer to the alternate multi-hop

path as a “split” path.

Split Path using intermediate hops

Source‘"‘__ __________________ Destinatior
B
14
Direct Path

Figure 1: A multi-hop path C1-C2-C3-C4 can be used to traresfde from C1 to C4 in a pipelined fashion.

3.2 Multi-Pathing

Striping the data at the source and sending it across meittigrlay paths can also lead to a better achievable through-
put. In other words, multiple independent routes can be eygal to simultaneously transfer disjoint chunks of a file

to its destination.

Destinatior

Destinatior

(b) Network 2

Figure 2: (a) Network 1 with two independent paths betweem@d. C4. (b) Network 2 where the paths between C1
and C4 share a common bottleneck.

Splitting a file at the source and transferring it through tiplé independent routes is equivalent to solving the
maximum flow problem in a graph, where the graph verticesasgmt the overlay nodes (e.g., GridFTP servers), and
the edge capacities equate to the network bandwidth betteeoorresponding pair of nodes. However, a direct
application of maximum flow concepts does not account fotldroecks due to physical sharing of links and routers.
For example, in Figure 2(a), two independent paths existéet C1 and C4. Therefore, the overall bandwidth for file
transfers between C1 and C4 can be increased by utilizingwh@aths simultaneously provided the hosts C1 and C4

can handle the combined data rate. However, if there is &dhiak which becomes bottleneck, the overall bandwidth

would not increase by increasing the number of overlay feass In Figure 2(b) an additional routing node, R, is
present, which is not a part of the overlay network. The re@&-C2-C4 and C1-C3-C4 both share the bottleneck
link R-C4. Therefore, an approach that finds multiple patdihks, but does not consider the physical “underlay”

network, will find suboptimal solutions. This is key to maxaing the effective aggregate bandwidth.

3.3 Path Determination Algorithm

The path determination algorithm (Algorithm 1) is an it@ratalgorithm that computes a set of paths which can be
collectively used to transfer a file from its source nodegsijts destination node. At each step, algorithm invokes
Best Path heuristic (Algorithm 2) to find a path that will ylghinimum transfer time for the requested file given the
concurrent transfers in the overlay network. It then modiffee overlay network graph to reflect the current transfer,
and continues it search for another path. Since past rdsbascshown that most of the benefit that can be obtained
by splitting TCP can be achieved by using up to 2 hops and gdsitra hops does not yield significant benefit [20],
in this algorithm, we only consider paths of length 2 or 3 whaoking at multi-hop paths.

In this work, the wide-area environment is represented bsaplyG = (V, E), referred as thelatform graph. In
the platform graph)/ is the set of machines anl represents the network edges. A network edge is the wide-are
connection between two machines. The weight of the edgeis a measure of the achievable bandwidifi;;
between the two machines. L&T'T;; be the round-trip time of the wide-area path between the siogend v; .

The best path heuristic takes as input the overlay Gi@ph (V, E), the set of the sourcéds; of the file f,, and the
destination node; .

The best path to transfer a file from the source or a set of ssuxr a destination, is the path which yields the
minimum expected completion time to transfer the file. Thstlpath heuristic is a variant of the Dijsktra’s shortest
path algorithm. The algorithm involves creating a new Gragh= (V/, E’) whereV’ =V and E' = E. However,
the weighting function employed for weight assignment t@dge between the nodes and the node; is the ratio
of the round-trip time of the path corresponding to the edgitst bandwidth. The motivation behind this is to give
preference to low-latency high-bandwidth edges. The odiféeerence is the calculation of the distance function to
measure the goodness of a path. Since the transfer of a fitedreource node to a destination node through a multi-
hop path occurs in a pipelined fashion, therefore, the dggtdunction of a path is computed as the maximum of the
weights on each of its constituent edges (see step 18). Natette traditional shortest path algorithm employs the

distance function to be the sum of weights instead of the mai.

Algorithm 1 Path Determination

Input: Platform G = (V, E), request< fy,,vq >, where the filef, is requested by destination;, and a setV
representing the set of sources of the ffle
1: Chosen Paths = ()
2: whileldo
3: Runthe Best Path Heuristic. Léfin Path be the output.

Add the pathMinPath to the setChosen Paths.
for Each edg€v;,v;) € MinPath do

10: wi; = wi; — MinWeight

11: return Chosen Paths

4. Let MinWeight be the minimum weight edge on the pathin Path .
5. if MinWeight == 0 then

6: return

7. ese

8:

9:

Figure 3: An example setup with shared resources.

3.4 Modding Bottleneck dueto Shared Resources

The path determination algorithm presented in Section Bd®@ses a set of independent paths to collectively transfer a
file. However, one or more selected paths can possibly studtlefeck links, which means that the overall bandwidth
would not necessarily increase by employing multiple palthsome cases, the aggregate bandwidth might sometimes
even decrease by employing multiple paths. An example ottangevith shared routers and links is illustrated in
Figure 3. In this setting, two paths, C1-R-C3 and C2-R-C3, loa simultaneously utilized to transfer data. If the
existence of router R is oblivious to the multi-pathing c&mn algorithm, then it will choose to split a file of size say
1000 Mb into two parts, one of siz800 Mb which is transferred along the path C1-R-C3, and the atfieize 200

Mb which is transferred along the path C2-R-C3. Since theemoR can only sustain a bandwidth of 800Mbps, the
flow along the path C1-R-C3 will saturate R. In that case, Weeftows are effectively serialized, requiring 2 seconds
to transfer the file. The aggregate bandwidth, therefor60@Mbps. On the other hand, a multi-pathing decision,
which incorporates the knowledge of the existence of R, ¢tenose to send the entire flow along the path C1-R-C3,
thereby getting a throughput of 800Mbps.

We model the shared bottlenecks by performing an offlineasttarization of the network. For each pair of edges

Algorithm 2 Best Path

Input: Platform G = (V, E), request< fy,,vq >, where the filef, is requested by destination;, and a setV
representing the set of sources of the ffle
1: Qutput Path = ()

2: Create a new grapt’ = (V/, E’) with V' =V and E’ = E. Weight of an edgev;; in the GraphG’ equals
RTT;;
NetBWL'j -

3: Define a variableDist; for each vertex.

4: Define a variable opCount; for each vertex.
5. Define a variablePred; for each vertex.

6: for each nodey; € V' do

7. if (v; € V) then

8: Dist; =0

9: €se

10: Dist; = 00

11: for each nodey; € V' do

12: HopCount; =0

13: Pred; =-1

14: Unmark all vertices of the Grap&’

15: while There exists an unmarked vertex@ do

16: Pick the unmarked vertex; with the minimum value ofDist; among all unmarked vertices.
17: for Each vertexv; adjacent tov; do

18: if (Dist; > max(Dist;,w;;)) A (HopCount; <2 Av; ==vq) V (HopCount; <2 Av; # vq)) then
19: Dist; = max(Dist;, w;;)

20: Pred; =1

21: HopCount; = HopCount; + 1

22: Set the vertex; as marked.
23: Qutput Path = vy

24: split = Predy

25: while split # —1 do

26: Prependsplit to Output Path
270 split = Predgpiit

28: return Qutput Path

< e1,ey > in the graphG, we first measure the end-to-end throughput for the wide-paghs corresponding to
edgese; and e, with no interference. Then we measure the end-to-end tlimouigon the two edges by performing
file transfers along them in parallel. The measured throughiplues alongz; and e; are then used to figure out
if the two edges share a common bottleneck. The output gerteby this analysis is a set of two-tuplé%ared,
where each element of the s€bared represents a set of edges in the overlay which share a comatterieck. For
example, ifShared = {< e1,ea >, < e3,e4 >}, it means that edges; ande, share a common bottleneck and so
do the edgess ande,. We ran the traceroute utility on the elements of the Sktred and verified that the edges
indeed involved shared links.

The offline characterization corresponding to identificatof shared bottlenecks is then used to avoid choosing

multiple overlay paths wherein the aggregate bandwidthlevowt increase. In future, we plan to employ more

sophisticated techniques [18], [22] for more accurate @ttarization of underlying congestion.

Algorithm 3 shows a variant of the proposed Path Determimagigorithm which incorporates this knowledge.

Algorithm 3 Path Determination with modeling of shared bottleneck
Input: Platform G = (V, E), request< fy,v4 >, where the filef, is requested by destination;, and a setV
representing the set of sources of the ffle
1: Chosen Paths = ()
2: whileldo
3: Run the Best Path Heuristic. Let the path returned be repreddy Min Path.

for Each PathAPath € Chosen Paths do

if APath and MinPath share an underlying bottlenedken
10: return
11 Add the pathMin Path to the set of selected patlihosen Paths.
12: for Each edg€v;,v;) € MinPath do
13: wi; = wi; — MinWeight
14: return Chosen Paths

4. Let MinWeight be the minimum weight edge on the pathin Path .
5. if MinWeight == Othen

6: return

7. ese

8:

9:

3.5 Scheduling a Batch of File Transfers

The optimizations presented in Sections 3.1 — 3.4 aim todwvpperformance for single-file transfers. In some ap-
plications, a batch of file transfers need to be handled. lecant work [16], we proposed a dynamic scheduling
algorithm which schedules a set of file transfer requestsengca batch of data-intensive tasks in a wide-area envi-
ronment. The scheduling algorithm is iterative, employamiye replica selection, and makes use of multiple sources
for simultaneously transferring multiple pieces of the sdite, i.e., non-overlapping portions of a chusib-chunks,
can be retrieved simultaneously from multiple file replic&he scheduling scheme, however, did not incorporate
multi-hop path splitting or multi-pathing. The path to tséer a file from a source node to a destination node follows
the underlying network routing. In this paper, we proposewa dynamic scheduling algorithm which builds upon the
algorithm proposed in our previous work by incorporating tleas of multi-hop path splitting and multi-pathing.

This scheduling scheme proceeds in steps and in each stelpdtsa pending file transfer request fy, vg >
from the request listR, and computes a schedule for the request. The schedule égjuast consists of the set of
paths to be employed to collectively transfer the file.

In our current implementation, we employ Globus GridFTPhasunderlying transfer mechanism [7]. Each source
node runs a Globus GridFTP server. Each destination nodetheesridFTP client side API to retrieve the portions

of the file. Since a destination node can become a replicasdar a file, a GridFTP server runs on each destination

10

node as well. After the schedule for a file has been compubeds¢heduler sends the schedule information to the
corresponding destination node. The destination nodésstiae retrieval of the file from the source nodes. The
scheduler moves on to the next pending file transfer requestepeats the whole process. The overall scheduling

scheme is illustrated in Algorithm 4.

Algorithm 4 Global Dynamic Scheduling with Multi-Hop Path Splittingdallulti-Pathing

Input: PlatformG = (V, E) and a setR = {< fo,vq > | file f; is requested by destinatian }
1. HostBw; = the host bandwidth at node
2: whilethere are pending requests, i.& # 0 do

3: if Jug such thatHost Bwg > € then

4: for each request =< f;,v4 >€ R do

5: Create a new grapti’ identical toG.

6: ChosenPaths <+ Path DeterminatiofG’, r)

7 Compute the expected finish time to transfer the filé¢o destinationv, .

8: Choose the requestwith the minimum expected finish time

9: Schedule the transfer of the file along the selected pathetoddev,; .
10: R—R—{r}
11: Update the expected available host bandwiditv§t Bw;) along the paths chosen to complete the request.
12: for every finished file transfer request f;, vy > do
13: Update the available network bandwidths along the pathsarihto complete the request

At step 6, the Path Determination method is invoked to setadtiple paths for the transfer request. The output
from this method makes up the schedule for the request. Tiestep (step 7) is to compute the expected minimum
completion time for transferring a chunk of the requesteal firthe transfer completion time is computed as follows.
We first divide the file into K portions wher& is the number of selected paths. The size of the portion isento
be in the same ratio as that of the bottleneck bandwidth op#tles. The transfer completion time is then simply the
maximum of the times taken to send each portion along itgdeséd path. At step 9, following the well-known Min-
Min [14] algorithm, among all the pending requests, the fiémsfer request with the minimum expected completion
time is chosen to be scheduled on the set of resources wtethiis minimum completion time. The scheduler then
updates the value of available bandwidths at the nodes &henghosen paths for the scheduled request. The overall

process repeats until all the file transfers have been stdedu

4 GridFTP with Path Splitting and Multi-Pathing

We now discuss the design and implementation of a modifiedF3i server/client infrastructure, which incorporates
the multi-hop path splitting and multi-pathing optimizats for file transfer. Our goal is to design a framework which
will allow GridFTP clients to benefit from path splitting amaulti-pathing in a transparent manner, i.e., clients will

issue GridFTP file transfer commands in much the same wayeggith now.

11

The path splitting and multi pathing optimizations requif®rmation about the overlay graph of GridFTP servers
in order to make efficient routing decisions and to leveraggtiag “network parallelism” by using multiple data flows
on distinct paths. Obtaining the overlay graph informafimnvery large grids is a hard problem especially since the
grids do not have a centralized authority. However, the esgEgnultiple paths to transfer a file from a source to a
destination through an overlay network of GridFTP servensiore suited to a scenario when those GridFTP servers
are involved in a collaborative setting (e.g. a scientifipeniment like LHC at CERN) and are willing to provide their
resources for forwarding of data to other sites. In otherdspthe applicability of these concepts is more suitable in a
virtual organization (VO) like setting.

We describe a decentralized system to construct and maihi@overlay graph of GridFTP servers in Section 4.2.
Our optimized GridFTP client first contacts the source GriBFserver (specified by the user) and retrieves the over-
lay graph information. The overlay information is basigadl set of tuples< source, destination, bandwidth >.
Once the GridFTP client has the required information, itsrtime path determination algorithm algorithm to deter-
mine the multi-hop path(s) through which the file is to be $farred. Implementation of path-splitting in GridFTP
involves the modification of the GridFTP server since it ifwes forwarding of data through intermediate hops. How-
ever, multi-pathing can be incorporated by just modifyihg GridFTP client globus-url-copy. The GridFTP client,
globus-url-copy, currently has support for accepting acfetource-destination url pairs and realizing the file trans
fers corresponding to them. We employ this functionalityeéalize multi-pathing. Once a set of paths have been
determined by a decision algorithm, globus-url-copy @eat new list of urls along with partial offsets and lengths
associated with each url and then performs the file transfieiguthe multiple designated paths to the destination. In
the next section, we present how we have implemented pattirgpln GridFTP.

Site A File transfer from A to B

Site B
GridFTP Server GridFTP Server
GridFTP i
C) GridFTP
Bandwidth Service Transfer finished Bandwidth Service
Src | Dest Bw ANEEN Src | Dest Bw

A B Val

A B |val

Site C | Site D

GridFTP Server \ ! GridFTP Server
GridFTP ; GridFTP
Bandwidth Service Bandwidth Service
N
Src | Dest Bw Src | Dest Bw
A B Val A B Val

Figure 4: A set of GridFTP servers forming an overlay and istggpoint-point bandwidth information.

12

4.1 Implementing Path Splittingin GridFTP

GridFTP uses a Data Storage Interface (DSI) to interact thighstorage system. The DSI layer accepts requests (e.g.,
get, put and stat) and performs the required operations @stthrage system. To achieve the split-TCP effect, the
DSI module must be modified to perform different operatioasdud on the data routing requirements. For instance, a
GridFTP server DSput could either transfer the data to the underlying disk sutesyor it could act as a split-point
and transfer the data to another GridFTP server. Rizk e24].Have implemented a DSl interface to achieve the split-
TCP functionality. Their implementation enables a GridFliEent to specify a multi-hop transfer between a source
and a destination URL through a series of intermediate Hpstpecifying split URLs. A split URL is essentially a
concatenation of multiple normal URLs. For example, a GfiRflient command issued with a source URL A/B and
the destination URL C/D means that the file will be transféfrem A to D via B and C. Using this DSI for split-TCP
functionality requires the user to define the overlay roetpired.

We have made a number of improvements to their work. In tmepiémentation, a GridFTP server could either
act as an end point or as an intermediate server but not bdtichvis very restrictive from the point of view of
production-use GridFTP servers. We have extended the B8t lay allowing it to simultaneously act as an end-
point and an intermediate “hop” for different connectiomis.addition, we have also provided support for directory
operations using intermediate servers, a feature not gealvin their work [21]. Furthermore, their implementation
worked only in the non-secure mode. We have incorporateddisessary changes to make the split-TCP work with

GSI security mechanism.

4.2 Constructing the Overlay Graph

To obtain the overlay graph information, each GridFTP seagts as a resource provider, thereby exposing WS re-
source properties (e.g., the bandwidth achieved by filesfeas using that GridFTP server). We propose a decentdalize
service-oriented architecture to facilitate sharing afdaidth data among sites.

Each GridFTP site also runs a GridFTP bandwidth reportimgice. The bandwidth reporting service works in
conjunction with the GridFTP server running at the site. &aery file transfer which happens through the GridFTP
server, the GridFTP server contacts the bandwidth reppstnvice with the three tuple source, destination, bandwidth >
associated with the transfer. The bandwidth reportingisersends the tuple to each of the peer sites which comprise
the overlay. Each of the sites maintains a circular queueaofitvidth values for each source-destination pair. The
circular queue stores historical bandwidth informationickhis used to make predictions about bandwidths in the

subsequent time intervals. We employ simple mean-baselitpoes to estimate the value of the bandwidth in the next

13

interval. In future, we plan to employ more sophisticatechtéques [28] for more accurate bandwidth predictions.
In this way, each of the sites maintains a set of three tuplesurce, destination, bandwidth > corresponding to

peer GridFTP sites in the Grid. The bandwidth reporting iseralso exposes API which allow external entities (e.qg.
GridFTP clients) to access the bandwidth information areit® optimize routing and multi-pathing decisions. We
employ a Globus toolkit component C-WS core [1], to develod deploy the bandwidth reporting service at each

site.

5 Experimental Results

We compare our dynamic scheduling approach against ouigugy proposed work [16] as well as a baseline strategy
that we refer to afNaive Scheduling. In this approach, each destination site picks a randombgeh replica source
for retrieving a file instead of employing dynamic bandwidtformation or multiple replicas. Here onwards, we
refer to our previously proposed scheduling algorithm [A6]GDS (Global Dynamic Scheduler), the scheduling
variant that incorporates path-splitting and multi-pathoptimizations a&SDSMHMP, and the scheduling variant

that incorporates the modeling of shared bottleneck on tapese two a&sDS-MHMP-SB.

51 Experimental Setup

We use the Globus implementation of GridFTP to transfer filds GridFTP exposes a set of API calls [4] for
setting TCP buffer sizes and to obtain portions of a file frosoarce. For batch transfers, a master scheduler sends
control information to clients (destination hosts). Thestileation hosts then caglobus_ftp_client_partial get() to
inform a source of the file it needs along with the start and@fskts. This is followed by a series of asynchronous
globus_ftp_client_register_read() calls which are used to transfer data from the source.

The experiments were carried out across five geographidadtyibuted sites: BMI, a memory/storage cluster in
the Department of Biomedical Informatics at the Ohio Statéversity; ST, the Starlight site in Chicago; JA site in
Japan which is a part of the Japan Gigibit Network 11 (JGN2@)jget; ORNL, which consists of 28 dual processor 3.06
GHz Intel Xeon sites; and ANL, a IA-32 Linux cluster which aists of 96 dual-processor Intel Xeon sites. The latter
two sites are on the Teragrid [24] network. Table 1 shows tredividths in Mbps (Megabits per second) between
pairs of sites of different sites.

For evaluation, we compared the performance of the varichisduling schemes under a set of well-known com-
munication patterns. For the experimental workloads, wpleyed files of size 100MB.

Figures 5(a) and 5(b) highlight the performance improvetdee to employing multi-hop path splitting and multi-

14

| [BMI [ORNL [ST | JA [ANL |

BMI 880 200 | 200 | 70 4
ORNL | 200 900 | 800 | 100 20
ST 80 900 | 900 | 800 | 150
JA 40 120 | 800 | 900 8
ANL 60 600 | 500 | 30 | 900

Table 1: Link bandwidths (in Mbps) between every pair ofsite

Multi-Hop Path Splitting Multi-Pathing

600 300
2 2
=} Ke}
S 400 2 200 £ —
S 200)
3 2 100
£ S
[<

=
0 : : : : 0 ‘ ‘ ‘ ‘
50 100 200 500 1000 50 100 200 500 1000
File size (MB) File Size (MB)
=—&—GridFTP with Multi-Hop Path Splitting =#==Normal GridFTP —&—GridFTP with Multi-Pathing == Normal GridFTP

(a) (b)

Figure 5: (a) Performance improvement due to multi-hop path spittising the path JA-ST-ANL as compared to using the
default path JA-ANL, (b) Performance improvement due totirpdathing by employing the paths BMI-ORNL-JA and BMI-SA-J
in parallel as compared to using the default path BMI-JA.

1 to Multi 1to Multi

o

o

[s]
®
(=}
o

N
o
]

w
o
]

n
o
S

=
o
o
Average Response
Time(s)
ey
o
o

Throughput (Mbps)

o

|
il i b

BMI ORNL ST JA ANL ORNL ST

Initial Source Node Initial Source Node

ONaive BGDS OGDS-MHMP O GDS-MHMP-SB ‘DNaive BGDS OGDS-MHMP OGDS-MHMP-SB

(@) (b)

Figure 6:Performance of all the algorithms under the 1-to-all comivation pattern in terms of the (a) Average throughput and
(b) Average response time.

pathing, respectively. Figure 5(a) compares the perfooeat a file transfer from the JA site to the ANL site using
the direct path as governed by underlying routing, with tagecwhen the ST site is employed as an intermediate path-
splitting site. The results show that the multi-hop pathifgrens significantly better than the direct transfer, esalbei

at very large file sizes. This is because, the bandwidth df BatST and ST-ANL is higher as compared to JA-ANL
while the end-to-end latency in both the cases is similarergfore, the overall throughput improves. Figure 5(b)

compares the performance of a file transfer from the BMI sitthe JA site using the direct path, with the case when

15

the file is split at the BMI site and sent across two indepehgaths BMI-ORNL-JA and BMI-ST-JA. The results
show that with multi-pathing, performance improves by up586. This is because, by employing independent paths,

the aggregate bandwidth at the destination site increases.

Data Replication Data Replication
600 400
q s
2 S5 300
=) 4o g
= @ 2 200
= o .=
2 200 o
° 5 100
£ z
0 0
BMI ANL ST JA ORNL BMI ANL ST JA ORNL
Destination Node Destination Node
‘DNa’l’ve B GDS OGDS-MHMP OGDS-MHMP-SB ‘ ONaive BGDS OGDS-MHMP OGDS-MHMP-SB
(a) (b)

Figure 7: Performance of all the algorithms under the effect of dapdigation, in terms of the (a) Average throughput and (b)
Average response time.

Figure 6 shows the performance of the scheduling schemess arittto-all communication pattern. In this exper-
iment, only one of the 5 sites acts as a source initially aorestall the files. Each of the file needs to be transferred
to all the destination sites. This experiment involved sfarring 40 100MB files from the source site to each of the
destination sites. The results show tiedS-MHMP leads to significant improvements in the achieved throughpu
over theGDS. This is because, with only a single source present inti@DS is initially restricted to only using
the default path between the source and the destinationmofes replicas of a file get created, those can also act as
replica sources thereby giving more flexibility @DS. GDSMHMP, on the other hand, exploits path splitting and
multi-pathing and thereby provides, significant perforeaimprovement. An example instance of multi-hop path
splitting being, the file transfer from the BMI site to the Jkesvia the ST site provides 60% improvement over a
direct transfer from the BMI site to the JA site for the fileesiander consideration. Similarly, an example instance
of multi-pathing is the scenario which involves the tramgfea file from the BMI site to the JA site. Multi-pathing
results in transferring disjoint pieces of file simultansiyuacross the two paths BMI-ORNL-JA and BMI-ST-JA.
The resulting performance improvement over a direct trang¥er the default path is around 39DS MHMP-SB
performs similar or better in comparison @S-MHMP. The maximum performance improvement achieved due to
modeling the shared bottleneck occurs in the case when ORNheiinitial source site. In this case, the transfer of
some of the files to the ST site and the ANL site (by employingsB& as the source) finish earlier and subsequent
transfer of those files to the BMI site employs all the threerses in parallel, that is, the ANL site, the ST site and

the ORNL site. However, Paths ORNL-BMI, ST-BMI share comrbottlenecks and so do the paths ORNL-BMI and

16

ANL-BMI thereby leading to improved performance f&DSMHMP-SB. The results also show that the proposed
scheduling schemes are able to consistently outperforiNahe Scheduling scheduling approach. This is because, in
the Naive Scheduling approach, clients act independently and make requestddemiithout any coordination. Each
file needs to be sent to multiple different destinationstehg leading to increased end-point contention due to mul-
tiple simultaneous requests for the same file. In terms oftleeage response timéDPS and its variants outperform
Naive Scheduling. This is becaus&;DSschedules the requests with the minimum expected compltitiee first. On

the other hand, iMNaive Scheduling, since multiple clients act independently of each othesrdfore, requests with
higher expected completion times can possibly executebedouests with lower expected completion times, thereby,
increasing the overall response time.

Figure 7 shows the performance of the scheduling schemesr timel influence of file replication. In this exper-
iment, each of the sites except one, stores a copy of eachJite. of the sites act as the destination site to which
all the files need to be transferred. Therefore, there aree4dilicas and the fifth site acts as a destination. This
experiment involved transferring 40 100MB files to the detiion site. The results show that the scheduling schemes
GDS, GDSMHMP and GDSMHMP-SB perform fairly similar. This happens because of the existeof multiple
initial file replicas, due to whiclsDS makes the choice for the best replica to realize each filesteanTherefore, the

extent of performance improvement due to path-splittingnaiti-pathing is very minimal.

Gather Gather
400 900
@ 2
o 300 &
= 2 . 600
=)
2 200 - x2
= o .=
= 2F 300
o 100 A o
= >
= <
0 0
ANL BMI ORNL ST JA ANL BMI ORNL ST JA
Destination Node Destination Node
‘DNa’l‘ve B GDS OGDS-MHMP OGDS-MHMP-SB ONaive BGDS OGDS-MHMP OGDS-MHMP-SB
(a) (b)

Figure 8:Performance of all the algorithms under a all-to-1 gathertfiinsfer pattern in terms of the (a) Average throughput and
(b) Average response time.

Figure 8 shows the performance of the scheduling schemes &irto-1 gather file transfer operation. In this
experiment, a set of files are distributed in a round-robéhifan across 4 of the sites, and one of the sites is employed
as a destination for all the files. Each file has only replidh@beginning, that is, each file is present on only one of the
sites. The performance results show that in some c&feS;MHMP andGDSMHMP-SB perform significantly better

thanGDS because these algorithms are able to exploit path spliimymulti-pathing to explore higher bandwidth

17

Data Redistribution- Bipartite

600

400

200

Throughput (Mbps)

BMI-ORNL ORNL-ST ST-JA JA-ANL ANL-BMI

Initial source nodes

ONaive BGDS OGDS-MHMP OGDS-MHMP-SB

(@)

Data Redistribution - Bipartite

Average Response
Time(s)
N
o
o

BMI-ORNL ~ ORNL-ST ST-JA JA-ANL ANL-BMI
Initial Source Nodes

ONaive BGDS OGDS-MHMP O GDS-MHMP-SB

(b)

Figure 9:Performance of all the algorithms under a bipartite datéstetution pattern in terms of the (a) Average throughpud a
(b) Average response time.

paths, thereby improving the throughput, while in othelesashe performance improvement is relatively less. This is
because of employing a single destination site in each edseh means that the opportunities for path-splitting and
multi-pathing are limited.

Figure 9 shows the performance of the scheduling schemes fite pattern which involves data redistribution
from a set of source sites to a set of destination sites. laratlords, the file transfer pattern is bipartite. Files are
distributed in a round-robin order on two of the 5 sites, ameldata needs to be remapped to the other three sites in
a round-robin manner. The results show t&@SMHMP and GDS MHMP-SB consistently outperforn&DSin all
the cases. This is because, multiple sites collectivelyaaatestinations for a bunch of files, thereby creating more

opportunities for path-splitting and multi-pathing in @axcenario.

6 Conclusions

In this paper, we explored two key optimizations, namelyjtishop path splitting and multi-pathing to improve the
performance of file transfers over shared wide-area netsvole presented a path determination algorithm which
integrates the aforesaid optimizations in order to impraseievable file transfer throughput for a single file transfe
We incorporated this with our previously proposed wideaaseheduling algorithm by making it path-splitting and
multi-pathing aware. We also presented the design and mgéation of service-oriented architecture which incor-
porates these ideas within the well known file transfer potoGridFTP. Finally, we looked at certain well-known
communication patterns, experimentally analyzed thegpernce of the proposed algorithm on those patterns and
show its effectiveness on a wide-area testbed. We obsdraéthe proposed algorithm yields significant performance
improvements for communication patterns like 1-to-allddoast, all-to-1 gather, data redistribution. However, fo

scenarios which involve data replication, we observediti@improvements are not that significant.

18

References

[1] GT C WS core.
http://www.globus.org/toolkit/docs/4.0/common/cweso

[2] LDR Project (2004) Lightweight Data Replicator. htfpnvw.Isc-group.phys.uwm.edu/LDR/.

[3] The Large Haldron Collider (LHC) . http://Ihc.web.cech/Inhc/.

[4] Globus FTP Client API, 2002.
http://www.globus.org/api/c/globuisp_client/html/index.html.

[5] Predicting the performance of wide area data transfer$PDPS’ 02: Proceedings of the 16th International Symposium on
Parallel and Distributed Processing, page 34, Washington, DC, USA, 2002. IEEE Computer Society.

[6] W. Allcock. Gridftp: Protocol extensions to ftp for theid. In Global Grid ForumGFD-R-P.020, 2003.

[7] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumgscu, |. Raicu, and |. Foster. The globus striped gridftp
framework and server. 18C '05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, Washington, DC,
USA, 2005. IEEE Computer Society.

[8] A. Bakre and B. R. Badrinath. I-tcp: indirect tcp for mbhosts. INNCDCS’95: Proceedings of the 15th International
Conference on Distributed Computing Systems, page 136, Washington, DC, USA, 1995. IEEE Computer Saciety

[9] M. Beck, T. Moore, J. S. Plank, and M. Swany. Logisticalwarking: Sharing more than the wires. In S. Hariri, C. A. |.ee
and C. S. Raghavendra, editofgtive Middleware Services, Norwell, MA, 2000. Kluwer Academic.

[10] K. Brown and S. Singh. M-tcp: Tcp for mobile cellular metrks. SGCOMM Comput. Commun. Rev., 27(5):19-43, 1997.

[11] Z. Cai, V. Kumar, and K. Schwan. Ig-paths: Self-reginigtdata streams across network overlaysPiaceedings of the The
15th |EEE International Symposium on High Performance Distributed Computing (HPDC' 06), 2006.

[12] A. Giersch, Y. Robert, and F. Vivien. Scheduling taskaring files from distributed repositories. Huro-Par 2004: Parallel
Processing: 10th International Euro-Par Conference, volume 3149 of LNCS pages 246-253, Sept. 2004.

[13] K. Holtman. Cms data grid system overview and requinetsieln Computing in High Energy and Nuclear Physics (CHEP),
2001.

[14] O. Ibarra and C. Kim. Heuristic algorithms for scheddliindependent tasks on nonindentical processadosrnal of the
ACM, 24(2):280-289, Apr 1977.

[15] G. Khanna, U. Catalyurek, T. Kurc, P. Sadayappan, a&liz. Scheduling file transfers for data-intensive jobsetero-
geneous clusters. In A.-M. Kermarrec, L. Bougé, and T.IPeiditors,Euro-Par, volume 4641 of ecture Notesin Computer
Science, pages 214-223. Springer, 2007.

[16] G. Khanna, T. Kurc, U. Catalyurek, R. Kettimuthu, P. &gappan, and J. Saltz. A dynamic scheduling approach fadzoo
nated wide-area data transfers using gridftpPtoc. of 22th International Parallel and Distributed Processing Symposium
(IPDPS), Miami, Florida, 2008. to appear.

[17] G. Khanna, N. Vydyanathan, T. Kurc, U. Catalyurek, P.ckHff, J. Saltz, and P. Sadayappan. A hypergraph partitgni
based approach for scheduling of tasks with batch-shapedri/CCGRID ' 05: Proceedings of the Fifth IEEE International

19

Symposiumon Cluster Computing and the Grid (CCGrid’ 05) - Volume 2, pages 792—-799, Washington, DC, USA, 2005. IEEE
Computer Society.

[18] M. S.Kim, T. Kim, Y. Shin, S. S. Lam, and E. J. Powers. A wekei-based approach to detect shared congesi@COMM
Comput. Commun. Rev., 34(4):293-306, 2004.

[19] T. Kosar and M. Livny. Stork: Making data placement atfokss citizen in the grid. IhCDCS’04: Proc.of the 24th
International Conference on Distributed Computing Systems (ICDCS 04), pages 342-349, Washington, DC, USA, 2004.
IEEE Computer Society.

[20] H. Pucha and Y. C. Hu. Overlay tcp: ending end-to-enddpart for higher throughput. IRoster in ACM SSGCOMM,
Philadelphia, PA, 2005.

[21] P. Rizk, C. Kiddle, and R. Simmonds. A gridftp overlaywerk service. Inin Proceedings of the 7th IEEE/ACM Interna-
tional Conference on Grid Computing, Baercelona, Spain, 2007.

[22] D. Rubenstein, J. Kurose, and D. Towsley. Detectingeshaongestion of flows via end-to-end measuremen8 GMET-
RICS’00: Proceedings of the 2000 ACM SSGMETRICSinternational conference on Measurement and modeling of computer
systems, pages 145-155, New York, NY, USA, 2000. ACM.

[23] M. Swany. Improving throughput for grid applicationgtlvnetwork logistics. IfSC ' 04: Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, page 23, Washington, DC, USA, 2004. IEEE Computer Society.

[24] TeraGrid. http://www.teragrid.org.

[25] B. Tierney, J. Lee, L. T. Chen, H. Herzog, G. Hoo, G. Jing &V. E. Johnston. Distributed parallel data storage system
a scalable approach to high speed image serversMULTIMEDIA "94: Proceedings of the second ACM international
conference on Multimedia, pages 399-405, New York, NY, USA, 1994. ACM Press.

[26] B. L. Tierney, J. Lee, B. Crowley, M. Holding, J. Hyltoand F. L. D. Jr. A network-aware distributed storage cache#&ba
intensive environments. IHPDC '99: Proceedings of the The Eighth IEEE International Symposium on High Performance
Distributed Computing, page 33, Washington, DC, USA, 1999. IEEE Computer Society.

[27] R. Wolski. Dynamically forecasting network perfornwnusing the network weather servicguster Computing, 1(1):119—
132, 1998.

[28] L. Yang, J. M. Schopf, and I. Foster. Improving paratlata transfer times using predicted variances in sharedonies$. In
CCGRID '05: Proceedings of the Fifth IEEE International Symposium on Cluster Computing and the Grid (CCGrid' 05) -
Volume 2, pages 734-742, Washington, DC, USA, 2005. IEEE Computee§o

20

